• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Friedrich-Alexander-Universität Pattern Recognition Lab PRL
  • FAUTo the central FAU website
Suche öffnen
  • Campo
  • StudOn
  • FAUdir
  • Jobs
  • Map
  • Help
Friedrich-Alexander-Universität Pattern Recognition Lab PRL
Navigation Navigation close
  • Lab
    • News
    • Cooperations
    • Join the Pattern Recognition Lab
    • Ph.D. Gallery
    • Contact
    • Directions
  • Team
    • Our Team
    • Former PRL members
  • Research
    • Research Groups
    • Research Projects
    • Publications
    • Competitions
    • Datasets
    • Research Demo Videos
    • Pattern Recognition Blog
    • Beyond the Patterns
  • Teaching
    • Curriculum / Courses
    • Lecture Notes
    • Lecture Videos
    • LME Videos
    • Thesis / Projects
  1. Home
  2. Research
  3. Research Groups
  4. Inverse Problems and Applications (IPA)
  5. Automatisiertes Intraoperatives Tracking zu Ablauf- und Dosisüberwachung in Röntgengestützten Minimalinvasiven Eingriffen

Automatisiertes Intraoperatives Tracking zu Ablauf- und Dosisüberwachung in Röntgengestützten Minimalinvasiven Eingriffen

In page navigation: Research
  • Beyond the Patterns
  • Competitions
  • Publications
  • Datasets
  • An AI-based framework for visualizing and analyzing massive amounts of 4D tomography data for beamline end users
  • An AI-based framework for visualizing and analyzing massive amounts of 4D tomography data for beamline end users
  • An AI-based framework for visualizing and analyzing massive amounts of 4D tomography data for beamline end users

Automatisiertes Intraoperatives Tracking zu Ablauf- und Dosisüberwachung in Röntgengestützten Minimalinvasiven Eingriffen

Automatic Intraoperative Tracking for Workflow and Dose Monitoring in X-Ray-based Minimally Invasive Surgeries

(Third Party Funds Single)

Overall project:
Project leader: Andreas Maier, Björn Eskofier
Project members: Rebecca Fahrig, Peter Blank, Prathmesh Madhu, Jennifer Maier, Julia Schottenhamml
Start date: June 1, 2018
End date: May 31, 2021
Acronym: Ait4Surgery
Funding source: Bundesministerium für Bildung und Forschung (BMBF)
URL:

Abstract

The goal of this project is the investigation of multimodal methods for the evaluation of interventional workflows in the operation room. This topic will be researched in an international project context with partners in Germany and in Brazil (UNISINOS in Porto Alegre). Methods will be developed to analyze the processes in an OR based on signals from body-worn sensors, cameras and other modalities like X-ray images recorded during the surgeries. For data analysis, techniques from the field of computer vision, machine learning and pattern recognition will be applied. The system will be integrated in a way that body-worn sensors developed by Portabiles as well as angiography systems produced by Siemens Healthcare can be included alongside.

Publications

  • Maier J., Schottenhamml J., Madhu P., da Costa CA., Maier A.:
    Analysis of Interventional Workflow Phases based on Image Classification
    65th Annual Meeting of the German Association for Medical Informatics, Biometry and Epidemiology (GMDS) (Berlin (online conference), September 6, 2020 - September 9, 2020)
    In: 65th Annual Meeting of the German Association for Medical Informatics, Biometry and Epidemiology (GMDS) 2021
    DOI: 10.3205/20gmds187
    URL: https://www.egms.de/static/en/meetings/gmds2020/20gmds187.shtml
    BibTeX: Download

Friedrich-Alexander-Universität Erlangen-Nürnberg
Lehrstuhl für Mustererkennung (Informatik 5)

Martensstr. 3
91058 Erlangen
  • Contact
  • Login
  • Intranet
  • Imprint
  • Privacy
  • Accessibility
  • RSS Feed
  • Instagram
  • TikTok
  • Mastodon
  • BlueSky
  • YouTube
  • Facebook
  • Xing
  • LinkedIn
  • Community
  • Threads
Up