• Jump to content
  • Jump to navigation
  • Jump to bottom of page
Simulate organization breadcrumb open Simulate organization breadcrumb close
Pattern Recognition Lab
  • FAUTo the central FAU website
  • Campo
  • UnivIS
  • Jobs
  • Map
  • Help

Pattern Recognition Lab

Navigation Navigation close
  • Overview
    • Contact
    • Directions
    Portal Overview
  • Team
    • Former PRL members
    Portal Team
  • Research
    • Research Groups
    • Research Projects
    • Pattern Recognition Blog
    • Beyond the Patterns
    • Publications
    • Research Demo Videos
    • Datasets
    • Competitions
    Portal Research
  • Teaching
    • Curriculum / Courses
    • Lecture Notes
    • Lecture Videos
    • Thesis / Projects
    • Free Machine and Deep Learning Resources
    • Free Medical Engineering Resources
    • LME Videos
    Portal Teaching
  • Lab
    • News
    • Ph.D. Gallery
    • Cooperations
    • Join the Pattern Recognition Lab
    Portal Lab
  1. Home
  2. Research
  3. Research Groups
  4. Precision Learning

Precision Learning

In page navigation: Research
  • Beyond the Patterns
  • Competitions
  • Publications
  • Datasets

Precision Learning

Contact

Christopher Syben

Dr. Christopher Syben, M. Sc.

Researcher

Department of Computer Science
Chair of Computer Science 5 (Pattern Recognition)

Room: Room 09.132
Martensstr. 3
91058 Erlangen
  • Phone number: +49 9131 85-27874
  • Email: christopher.syben@fau.de
  • Website: https://lme.tf.fau.de/person/syben/
Bernhard Stimpel

Bernhard Stimpel, M. Sc.

Researcher

Department of Computer Science
Chair of Computer Science 5 (Pattern Recognition)

Room: Room 09.132
Martensstr. 3
91058 Erlangen
  • Phone number: +49 9131 85-27874
  • Email: bernhard.stimpel@fau.de
  • Website: http://www5.cs.fau.de/~stimpel
Precision Learning is a research direction, seeking
to integrate known operators into machine learning models to improve
generalization und efficiency.

Known operators have been shown to hold the
potential of reducing maximal error bounds when incorporated into deep
neural networks. This suggests their inclusion could allow models to
learn from less data and increase robustness.

Projects

Participating Scientists

Publications

  • Huang Y., Taubmann O., Huang X., Haase V., Lauritsch G., Maier A.:
    A New Scale Space Total Variation Algorithm for Limited Angle Tomography
    CT-Meeting 2016 (Bamberg, Germany, April 13, 2016 - April 16, 2016)
    In: Marc Kachelrieß (ed.): CT-Meeting 2016 Proceedings (The 4th International Meeting on Image Formation in X-Ray Computed Tomography) 2016
    URL: https://www5.informatik.uni-erlangen.de/Forschung/Publikationen/2016/Huang16-ANS.pdf
    BibTeX: Download
  • Huang X., Xia Y., Huang Y., Hornegger J., Maier A.:
    Overexposure Correction by Mixed One-bit Compressive Sensing for C-Arm CT
    Bildverarbeitung für die Medizin 2017 (Heidelberg, March 12, 2017 - March 14, 2017)
    In: Klaus Hermann Maier-Hein, geb. Fritzsche, Thomas Martin Deserno, geb. Lehmann, Heinz Handels,Thomas Tolxdorff (ed.): Bildverarbeitung für die Medizin: Algorithmen-Systeme-Anwendungen, Berlin: 2017
    DOI: 10.1007/978-3-662-54345-0
    URL: https://www5.informatik.uni-erlangen.de/Forschung/Publikationen/2017/Huang17-OCB.pdf
    BibTeX: Download
  • Huang Y., Gao L., Preuhs A., Maier A.:
    Field of View Extension in Computed Tomography Using Deep Learning Prior
    Bildverarbeitung für die Medizin (Berlin, March 15, 2020 - March 17, 2020)
    In: Andreas Maier, Klaus Hermann Maier-Hein, Thomas Martin Deserno, Heinz Handels, Thomas Tolxdorff (ed.): Bildverarbeitung für die Medizin: Algorithmen – Systeme – Anwendungen 2020
    URL: https://arxiv.org/abs/1911.01178
    BibTeX: Download
  • Huang Y., Preuhs A., Lauritsch G., Manhart M., Huang X., Maier A.:
    Data Consistent Artifact Reduction for Limited Angle Tomography with Deep Learning Prior
    MICCAI MLMIR (Shenzhen, China, October 17, 2019 - October 17, 2019)
    In: Knoll, Florian and Maier, Andreas and Rueckert, Daniel and Ye, Jong Chul (ed.): Machine Learning for Medical Image Reconstruction, Cham: 2019
    DOI: 10.1007/978-3-030-33843-5_10
    URL: https://link.springer.com/chapter/10.1007/978-3-030-33843-5_10
    BibTeX: Download
  • Huang Y., Taubmann O., Huang X., Haase V., Lauritsch G., Maier A.:
    A NEW WEIGHTED ANISOTROPIC TOTAL VARIATION ALGORITHM FOR LIMITED ANGLE TOMOGRAPHY
    2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI) (Prague, April 13, 2016 - April 16, 2016)
    In: the 2016 IEEE International Symposium on Biomedical Imaging: From Nano to Macro 2016
    DOI: 10.1109/ISBI.2016.7493336
    URL: https://www5.informatik.uni-erlangen.de/Forschung/Publikationen/2016/Huang-ANW.pdf
    BibTeX: Download
Friedrich-Alexander-Universität
Erlangen-Nürnberg

Schlossplatz 4
91054 Erlangen
  • Login
  • Intranet
  • Imprint
  • Privacy
  • Accessibility
Up