• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Friedrich-Alexander-Universität Pattern Recognition Lab PRL
  • FAUTo the central FAU website
Suche öffnen
  • Campo
  • StudOn
  • FAUdir
  • Jobs
  • Map
  • Help
Friedrich-Alexander-Universität Pattern Recognition Lab PRL
Navigation Navigation close
  • Lab
    • News
    • Cooperations
    • Join the Pattern Recognition Lab
    • Ph.D. Gallery
    • Contact
    • Directions
  • Team
    • Our Team
    • Former PRL members
  • Research
    • Research Groups
    • Research Projects
    • Publications
    • Competitions
    • Datasets
    • Research Demo Videos
    • Pattern Recognition Blog
    • Beyond the Patterns
  • Teaching
    • Curriculum / Courses
    • Lecture Notes
    • Lecture Videos
    • LME Videos
    • Thesis / Projects
  1. Home
  2. Research
  3. Research Groups
  4. Deep Learning für die multimodellhafte kardiale MR-Bildanalyse und -Quantifizierung

Deep Learning für die multimodellhafte kardiale MR-Bildanalyse und -Quantifizierung

In page navigation: Research
  • Beyond the Patterns
  • Competitions
  • Publications
  • Datasets
  • An AI-based framework for visualizing and analyzing massive amounts of 4D tomography data for beamline end users
  • An AI-based framework for visualizing and analyzing massive amounts of 4D tomography data for beamline end users
  • An AI-based framework for visualizing and analyzing massive amounts of 4D tomography data for beamline end users

Deep Learning für die multimodellhafte kardiale MR-Bildanalyse und -Quantifizierung

Deep Learning for Multi-modal Cardiac MR Image Analysis and Quantification

(Third Party Funds Single)

Overall project:
Project leader: Sulaiman Vesal
Project members: Andreas Maier
Start date: January 1, 2017
End date: May 1, 2020
Acronym:
Funding source: Deutscher Akademischer Austauschdienst (DAAD)
URL:

Abstract

Cardiovascular diseases (CVDs) and other cardiac pathologies are the leading cause of death in Europe and the USA. Timely diagnosis and post-treatment follow-ups are imperative for improving survival rates and delivering high-quality patient care. These steps rely heavily on numerous cardiac imaging modalities, which include CT (computerized tomography), coronary angiography and cardiac MRI. Cardiac MRI is a non-invasive imaging modality used to detect and monitor cardiovascular diseases. Consequently, quantitative assessment and analysis of cardiac images is vital for diagnosis and devising suitable treatments. The reliability of quantitative metrics that characterize cardiac functions such as, myocardial deformation and ventricular ejection fraction, depends heavily on the precision of the heart chamber segmentation and quantification. In this project, we aim to investigate deep learning methods to improve the diagnosis and prognosis for CVDs,

Publications

  • Vesal S., Ravikumar N., Maier A.:
    Automated Multi-sequence Cardiac MRI Segmentation Using Supervised Domain Adaptation
    In: STACOM 2019 2019
    DOI: 10.1007/978-3-030-39074-7_32
    BibTeX: Download
  • Vesal S., Ravikumar N., Maier A.:
    Dilated Convolutions in Neural Networks for Left Atrial Segmentation in 3D Gadolinium Enhanced-MRI
    International Workshop on Statistical Atlases and Computational Models of the Heart
    In: STACOM 2018: Statistical Atlases and Computational Models of the Heart. Atrial Segmentation and LV Quantification Challenges 2019
    DOI: 10.1007/978-3-030-12029-0_35
    BibTeX: Download
  • Vesal S., Maier A., Ravikumar N.:
    Fully Automated 3D Cardiac MRI Localisation and Segmentation Using Deep Neural Networks
    In: Journal of Imaging 6 (2020), Article No.: 65
    ISSN: 2313-433X
    DOI: 10.3390/jimaging6070065
    BibTeX: Download
  • Vesal S., Gu M., Maier A., Ravikumar N.:
    Spatio-temporal Multi-task Learning for Cardiac MRI Left Ventricle Quantification
    In: IEEE Journal of Biomedical and Health Informatics (2020)
    ISSN: 2168-2194
    DOI: 10.1109/JBHI.2020.3046449
    URL: https://ieeexplore.ieee.org/document/9302580
    BibTeX: Download

Friedrich-Alexander-Universität Erlangen-Nürnberg
Lehrstuhl für Mustererkennung (Informatik 5)

Martensstr. 3
91058 Erlangen
  • Contact
  • Login
  • Intranet
  • Imprint
  • Privacy
  • Accessibility
  • RSS Feed
  • Instagram
  • TikTok
  • Mastodon
  • BlueSky
  • YouTube
  • Facebook
  • Xing
  • LinkedIn
  • Community
  • Threads
Up