• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Friedrich-Alexander-Universität Pattern Recognition Lab PRL
  • FAUTo the central FAU website
Suche öffnen
  • Campo
  • StudOn
  • FAUdir
  • Jobs
  • Map
  • Help
Friedrich-Alexander-Universität Pattern Recognition Lab PRL
Navigation Navigation close
  • Lab
    • News
    • Cooperations
    • Join the Pattern Recognition Lab
    • Ph.D. Gallery
    • Contact
    • Directions
  • Team
    • Our Team
    • Former PRL members
  • Research
    • Research Groups
    • Research Projects
    • Publications
    • Competitions
    • Datasets
    • Research Demo Videos
    • Pattern Recognition Blog
    • Beyond the Patterns
  • Teaching
    • Curriculum / Courses
    • Lecture Notes
    • Lecture Videos
    • LME Videos
    • Thesis / Projects
  1. Home
  2. Research
  3. Research Groups
  4. Precision Learning

Precision Learning

In page navigation: Research
  • Beyond the Patterns
  • Competitions
  • Publications
  • Datasets
  • An AI-based framework for visualizing and analyzing massive amounts of 4D tomography data for beamline end users
  • An AI-based framework for visualizing and analyzing massive amounts of 4D tomography data for beamline end users
  • An AI-based framework for visualizing and analyzing massive amounts of 4D tomography data for beamline end users

Precision Learning

Contact

Christopher Syben

Dr. Christopher Syben, M. Sc.

Researcher

Department of Computer Science
Chair of Computer Science 5 (Pattern Recognition)

Room: Room 09.132
Martensstr. 3
91058 Erlangen
  • Phone number: +49 9131 85-27874
  • Email: christopher.syben@fau.de
  • Website: https://lme.tf.fau.de/person/syben/
Bernhard Stimpel

Bernhard Stimpel, M. Sc.

Researcher

Department of Computer Science
Chair of Computer Science 5 (Pattern Recognition)

Room: Room 09.132
Martensstr. 3
91058 Erlangen
  • Phone number: +49 9131 85-27874
  • Email: bernhard.stimpel@fau.de
  • Website: http://www5.cs.fau.de/~stimpel
Precision Learning is a research direction, seeking to integrate known operators into machine learning models to improve generalization und efficiency. Known operators have been shown to hold the potential of reducing maximal error bounds when incorporated into deep neural networks. This suggests their inclusion could allow models to learn from less data and increase robustness.

Projects

Participating Scientists

  •  

Publications

  • Huang Y., Taubmann O., Huang X., Haase V., Lauritsch G., Maier A.:
    A New Scale Space Total Variation Algorithm for Limited Angle Tomography
    CT-Meeting 2016 (Bamberg, Germany, April 13, 2016 - April 16, 2016)
    In: Marc Kachelrieß (ed.): CT-Meeting 2016 Proceedings (The 4th International Meeting on Image Formation in X-Ray Computed Tomography) 2016
    URL: https://www5.informatik.uni-erlangen.de/Forschung/Publikationen/2016/Huang16-ANS.pdf
    BibTeX: Download
  • Huang Y., Taubmann O., Huang X., Lauritsch G., Maier A.:
    Papoulis-Gerchberg Algorithms for Limited Angle Tomography Using Data Consistency Conditions
    the 5th International Conference on Image Formation in X-ray Computed Tomography (Salt Lake City, Utah, the USA, May 20, 2018 - May 23, 2018)
    In: Proceedings of the 5th International Conference on Image Formation in X-ray Computed Tomography, Salt Lake City, Utah, the USA: 2018
    URL: https://www5.informatik.uni-erlangen.de/Forschung/Publikationen/2018/Huang18-PAF.pdf
    BibTeX: Download
  • Haase V., Taubmann O., Huang Y., Krings G., Lauritsch G., Maier A., Mertins A.:
    Make the Most of Time: Temporal Extension of the iTV Algorithm for 4D Cardiac C-Arm CT
    Bildverarbeitung für die Medizin 2016 (Berlin)
    In: Bildverarbeitung für die Medizin 2016, Berlin Heidelberg: 2016
    DOI: 10.1007/978-3-662-49465-3_31
    URL: https://www5.informatik.uni-erlangen.de/Forschung/Publikationen/2016/Haase16-MTM.pdf
    BibTeX: Download

Friedrich-Alexander-Universität Erlangen-Nürnberg
Lehrstuhl für Mustererkennung (Informatik 5)

Martensstr. 3
91058 Erlangen
  • Contact
  • Login
  • Intranet
  • Imprint
  • Privacy
  • Accessibility
  • RSS Feed
  • Instagram
  • TikTok
  • Mastodon
  • BlueSky
  • YouTube
  • Facebook
  • Xing
  • LinkedIn
  • Community
  • Threads
Up