Ophthalmic Imaging

In the recent decade, ophthalmic imaging has proven to be a steadily growing field of research. A milestone in ophthalmology was the transfer of Optical Coherence Tomography (OCT) from research to clinical use. Compared to conventional fundus photography, OCT allows the three dimensional, depth resolved visualization of the human retina, while preserving the non-invasiveness. Recently, a radical change occured in the field of OCT research with the clinical introduction of OCT angiography (OCTA), which further adds dye-free imaging of the underlying vasculature.

Variable Interscan Time Analysis revealing slower blood flow in neovascularization in a PDR patient.

Research Focus

To facilitate an efficient analysis of this vastly increased amount of information, new processing algorithms are required to support the treating clinician. Our research focus is twofold: On the one hand, we develop advanced motion compensation, shadow artifact compensation and signal reconstruction algorithms to achieve artifact-free OCT(A) signals of best possible quality. On the other hand, we aid accurate image analysis by improving layer and vessel segmentations, categorizing vessels into arteries/veins or pathology. By combining both efforts, we want to improve the understanding of the most prevalent eye diseases, allowing for more accurate treatment and thus improved patient outcome.

Advanced shadow artifact removal reveals the unique structures of the retinal vascular networks.

Multidisciplinary Collaborations

To enable research with state-of-the-art technology while preserving a close link to the clinical needs, the work of our group is embedded in a multidisciplinary environment including optical engineers at the Massachusetts Institute of Technology, Cambridge, USA and clinicians at the New England Eye Center, Boston, USA and the Department of Ophthalmology at the University Clinic Erlangen.

Julia Schottenhamml, M. Sc.

Lennart Husvogt, M. Sc.

Stefan Ploner, M. Sc.

Weilin Fu, M. Sc.