• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Friedrich-Alexander-Universität Pattern Recognition Lab PRL
  • FAUTo the central FAU website
Suche öffnen
  • Campo
  • StudOn
  • FAUdir
  • Jobs
  • Map
  • Help
Friedrich-Alexander-Universität Pattern Recognition Lab PRL
Navigation Navigation close
  • Lab
    • News
    • Cooperations
    • Join the Pattern Recognition Lab
    • Ph.D. Gallery
    • Contact
    • Directions
  • Team
    • Our Team
    • Former PRL members
  • Research
    • Research Groups
    • Research Projects
    • Publications
    • Competitions
    • Datasets
    • Research Demo Videos
    • Pattern Recognition Blog
    • Beyond the Patterns
  • Teaching
    • Curriculum / Courses
    • Lecture Notes
    • Lecture Videos
    • LME Videos
    • Thesis / Projects
  1. Home
  2. Research
  3. Research Groups
  4. MotionLab@Home: Multimodal movement analysis system for therapy monitoring

MotionLab@Home: Multimodal movement analysis system for therapy monitoring

In page navigation: Research
  • Beyond the Patterns
  • Competitions
  • Publications
  • Datasets
  • An AI-based framework for visualizing and analyzing massive amounts of 4D tomography data for beamline end users
  • An AI-based framework for visualizing and analyzing massive amounts of 4D tomography data for beamline end users
  • An AI-based framework for visualizing and analyzing massive amounts of 4D tomography data for beamline end users

MotionLab@Home: Multimodal movement analysis system for therapy monitoring

MotionLab@Home: Multimodal movement analysis system for therapy monitoring

(Third Party Funds Group – Sub project)

Overall project: E-Home-Center
Project leader: Björn Eskofier
Project members: Jochen Klucken, Cristian Federico Pasluosta, Heiko Gaßner
Start date: October 1, 2015
End date: December 31, 2016
Acronym:
Funding source: Bayerisches Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst (ab 10/2013) / Forschungsverbund
URL:

Abstract

A current challenge is the transfer of mobile sensor-based gait analysis systems from clinical settings to the home environment to capture movement parameters and their changes (for example due to medication) in everyday life. The goal of this project is to build a complementary, video and sensor based system which can be used to evaluate long-term monitoring of interventions in Parkinson's Disease in the home-environment. Ethical aspects of home-monitoring are especially taken into consideration in the development phase. The sensor system will be based on the eGaIT system ("embedded Gait analysis using Intelligent Technology) and a markerless video-capturing system. Ethical research is performed to consider potential issues within this scope.

Publications

  • Kluge F., Pasluosta CF., Gaßner H., Klucken J., Eskofier B.:
    MotionLab@Home: Complementary Measurement of Gait Characteristics Using Wearable Technology and Markerless Video Tracking - A Study Protocol
    In: Advanced Engineering Forum 19 (2016), p. 149-155
    ISSN: 2234-9898
    DOI: 10.4028/www.scientific.net/AEF.19.149
    BibTeX: Download
  • Kluge F., Gaßner H., Hannink J., Pasluosta CF., Klucken J., Eskofier B.:
    Towards Mobile Gait Analysis: Concurrent Validity and Test-Retest Reliability of an Inertial Measurement System for the Assessment of Spatio-Temporal Gait Parameters
    In: Sensors 17 (2017), p. 1522
    ISSN: 1424-8220
    DOI: 10.3390/s17071522
    BibTeX: Download

Friedrich-Alexander-Universität Erlangen-Nürnberg
Lehrstuhl für Mustererkennung (Informatik 5)

Martensstr. 3
91058 Erlangen
  • Contact
  • Login
  • Intranet
  • Imprint
  • Privacy
  • Accessibility
  • RSS Feed
  • Instagram
  • TikTok
  • Mastodon
  • BlueSky
  • YouTube
  • Facebook
  • Xing
  • LinkedIn
  • Community
  • Threads
Up