• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Friedrich-Alexander-Universität Pattern Recognition Lab PRL
  • FAUTo the central FAU website
Suche öffnen
  • Campo
  • StudOn
  • FAUdir
  • Jobs
  • Map
  • Help
Friedrich-Alexander-Universität Pattern Recognition Lab PRL
Navigation Navigation close
  • Lab
    • News
    • Cooperations
    • Join the Pattern Recognition Lab
    • Ph.D. Gallery
    • Contact
    • Directions
  • Team
    • Our Team
    • Former PRL members
  • Research
    • Research Groups
    • Research Projects
    • Publications
    • Competitions
    • Datasets
    • Research Demo Videos
    • Pattern Recognition Blog
    • Beyond the Patterns
  • Teaching
    • Curriculum / Courses
    • Lecture Notes
    • Lecture Videos
    • LME Videos
    • Thesis / Projects
  1. Home
  2. Research
  3. Research Groups
  4. Image Analysis

Image Analysis

In page navigation: Research
  • Beyond the Patterns
  • Competitions
  • Publications
  • Datasets
  • An AI-based framework for visualizing and analyzing massive amounts of 4D tomography data for beamline end users
  • An AI-based framework for visualizing and analyzing massive amounts of 4D tomography data for beamline end users
  • An AI-based framework for visualizing and analyzing massive amounts of 4D tomography data for beamline end users

Image Analysis

The Image Analysis Group is dedicated to extract information from images. Examples are the outlining of specific structures in 2D and 3D images, like extraction of pages in CT scans of books or the detection of lesions in mammographic images.

Colloqium timetable

No event found!

Projects

Digital Pathology - New Approaches to the Automated Image Analysis of Histologic Slides

The pathologist is still the gold standard in the diagnosis of diseases in tissue slides. Due to its human nature, the pathologist is on one side able to flexibly adapt to the high morphological and technical variability of histologic slides but of limited objectivity due to cognitive and visual traps.

In diverse project we are applying and validating currently available tools and solutions in digital pathology but are also developing new solution in automated image analysis to complement and improve the pathologist especially in areas of quantitative image analysis.

→ More information

Automatic classification and image analysis of confocal laser endomicroscopy images

The goal of this project is to detect cancerous tissue in confocal lasermicroendoscopy (CLE) images of the oral cavity and the vocal cord. The current treatment of these diseases is a histological analysis of specimen and a surgical resection, which has a rather high long-term survival rate, or radiation therapy with a lower survival rate. An early detection of cancerous tissue could lead to a lowered complication rate for further treatment, as well as a better overall prognosis for patients. Further, an in-vivo diagnosis during operation could narrow down the area for the necessary surgical excision, which is especially beneficial for cancer of the vocal cords.

For this reason, we are applying methods of pattern recognition to facilitate and support diagnosis. We were able to show that these can be applied with high accuracies on CLE images.

→ More information

Ait4Surgery: Automatic Intraoperative Tracking for Workflow and Dose Monitoring in X-Ray-based Minimally Invasive Surgeries

The goal of this project is the investigation of multimodal methods for the evaluation of interventional workflows in the operation room. This topic will be researched in an international project context with partners in Germany and in Brazil (UNISINOS in Porto Alegre). Methods will be developed to analyze the processes in an OR based on signals from body-worn sensors, cameras and other modalities like X-ray images recorded during the surgeries. For data analysis, techniques from the field of…

→ More information

Publications

  • Bertram CA., Aubreville M., Marzahl C., Maier A., Klopfleisch R.:
    A large-scale dataset for mitotic figure assessment on whole slide images of canine cutaneous mast cell tumor
    In: Scientific Data 6 (2019), p. 1-9
    ISSN: 2052-4463
    DOI: 10.1038/s41597-019-0290-4
    URL: https://www.nature.com/articles/s41597-019-0290-4.pdf
    BibTeX: Download
  • Fu W., Breininger K., Schaffert R., Ravikumar N., Maier A.:
    A Divide-and-Conquer Approach towards Understanding Deep Networks
    MICCAI 2019 (Shenzhen, China, October 13, 2019 - October 17, 2019)
    In: Dinggang Shen, Tianming Liu, Terry M. Peters, Lawrence H. Staib, Caroline Essert, Sean Zhou, Pew-Thian Yap, Ali Khan (ed.): Medical Image Computing and Computer Assisted Intervention (MICCAI 2019), Shenzhen: 2019
    DOI: 10.1007/978-3-030-32239-7_21
    URL: https://link.springer.com/chapter/10.1007/978-3-030-32239-7_21
    BibTeX: Download

Persons

Category ia could not be found.

Friedrich-Alexander-Universität Erlangen-Nürnberg
Lehrstuhl für Mustererkennung (Informatik 5)

Martensstr. 3
91058 Erlangen
  • Contact
  • Login
  • Intranet
  • Imprint
  • Privacy
  • Accessibility
  • RSS Feed
  • Instagram
  • TikTok
  • Mastodon
  • BlueSky
  • YouTube
  • Facebook
  • Xing
  • LinkedIn
  • Community
  • Threads
Up