• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Friedrich-Alexander-Universität Pattern Recognition Lab PRL
  • FAUTo the central FAU website
Suche öffnen
  • Campo
  • StudOn
  • FAUdir
  • Jobs
  • Map
  • Help
Friedrich-Alexander-Universität Pattern Recognition Lab PRL
Navigation Navigation close
  • Lab
    • News
    • Cooperations
    • Join the Pattern Recognition Lab
    • Ph.D. Gallery
    • Contact
    • Directions
  • Team
    • Our Team
    • Former PRL members
  • Research
    • Research Groups
    • Research Projects
    • Publications
    • Competitions
    • Datasets
    • Research Demo Videos
    • Pattern Recognition Blog
    • Beyond the Patterns
  • Teaching
    • Curriculum / Courses
    • Lecture Notes
    • Lecture Videos
    • LME Videos
    • Thesis / Projects
  1. Home
  2. Research
  3. Research Groups
  4. Data Processing for Utility Infrastructure
  5. UtilityTwin

UtilityTwin

In page navigation: Research
  • Beyond the Patterns
  • Competitions
  • Publications
  • Datasets
  • An AI-based framework for visualizing and analyzing massive amounts of 4D tomography data for beamline end users
  • An AI-based framework for visualizing and analyzing massive amounts of 4D tomography data for beamline end users
  • An AI-based framework for visualizing and analyzing massive amounts of 4D tomography data for beamline end users

UtilityTwin

UtilityTwin

(Third Party Funds Group – Overall project)

Overall project:
Project leader: Andreas Maier, Siming Bayer, Adithya Ramachandran
Project members:
Start date: September 1, 2021
End date: August 31, 2024
Acronym: UtilityTwin
Funding source: Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie (StMWi) (seit 2018)
URL:

Abstract

In the UtilityTwin research project, an intelligent digital twin for any energy or water supply network is to be researched and developed on the basis of adaptive high-resolution sensor data (down to the sub-second range) and machine learning techniques. Overall, the technology concepts BigData and AI are to be combined in an innovative way in this research project in order to make positive contributions to the implementation of the energy transition and to counteract climate change.

Publications

  • Chatterjee S., Bayer S., Maier A.:
    Prediction of Household-level Heat-Consumption using PSO enhanced SVR Model
    Tackling Climate Change with Machine Learning: workshop at NeurIPS 2021 (Online, December 14, 2021 - December 14, 2021)
    In: Tackling Climate Change with Machine Learning: workshop at NeurIPS 2021, https://www.climatechange.ai/events/neurips2021.html#accepted-works: 2021
    Open Access: https://www.climatechange.ai/papers/neurips2021/42/paper.pdf
    URL: https://www.climatechange.ai/events/neurips2021.html#accepted-works
    BibTeX: Download
  • Chatterjee S., Ramachandran A., Neergaard TF., Maier A., Bayer S.:
    Heat Demand Forecasting with Multi-Resolutional Representation of Heterogeneous Temporal Ensemble
    NeurIPS 2022 Workshop Tackling Climate Change with Machine Learning (Hybrid, December 9, 2022 - December 9, 2022)
    In: NeurIPS 2022 Workshop: Tackling Climate Change with Machine Learning 2022
    Open Access: https://www.climatechange.ai/papers/neurips2022/46
    URL: https://www.climatechange.ai/papers/neurips2022/46
    BibTeX: Download
  • Basak P., Ramachandran A., Maier A., Bayer S.:
    Unveiling Consumer Behavior in District Heating Network: A Contrastive Learning Approach to Clustering
    SESAAU2024 – Smart Energy Systems Conference (Aalborg, Denmark, September 10, 2024 - September 11, 2024)
    BibTeX: Download
  • Ramachandran A., Mousa H., Maier A., Bayer S.:
    A Week Ahead Water Demand Forecasting using Convolutional Neural Network on Multi-Channel Wavelet Scalogram
    WDSA CCWI 2024 - 3rd International Joint Conference on Water Distribution Systems Analysis & Computing and Control for the Water Industry (University of Ferrara, Ferrara, Italy, July 1, 2024 - July 5, 2024)
    BibTeX: Download
  • Ramachandran A., Neergaard TF., Maier A., Bayer S.:
    Advancing Heat Demand Forecasting with Attention Mechanisms: Opportunities and Challenges
    NeurIPS 2024 The Thirty-Eighth Annual Conference on Neural Information Processing Systems (Vancouver, Canada, December 10, 2024 - December 15, 2024)
    In: Advancing Heat Demand Forecasting with Attention Mechanisms: Opportunities and Challenges 2024
    URL: https://www.climatechange.ai/papers/neurips2024/26
    BibTeX: Download

Friedrich-Alexander-Universität Erlangen-Nürnberg
Lehrstuhl für Mustererkennung (Informatik 5)

Martensstr. 3
91058 Erlangen
  • Contact
  • Login
  • Intranet
  • Imprint
  • Privacy
  • Accessibility
  • RSS Feed
  • Instagram
  • TikTok
  • Mastodon
  • BlueSky
  • YouTube
  • Facebook
  • Xing
  • LinkedIn
  • Community
  • Threads
Up