Learning Algorithms for Medical Big Data Analysis (LAMBDA)


This group is concerned with applying the most advanced learning approaches on multi-modal, medical imaging for the improvement of clinical decision making. Current topics of interest include identification of a malignant tumor sub-types in breast cancer, establishing correlations between image-based features, gene expression and disease progression in patients, and developing innovative therapeutic approaches such as immune cell guidance and response activation.

Projects

Term: since October 1, 2018
Funding source: Bayerisches Staatsministerium für Wirtschaft, Landesentwicklung und Energie (StMWi) (seit 2018)
Project leader:

In clinical settings, different data is stored in different systems. These data are very heterogeneous, but still highly interconnected. Graph databases are a good fit for this kind of data: they contain heterogeneous "data nodes" which can be connected to each other. The basic question is now if and how clinical data can be used in a graph database, most importantly how clinical staff can profit from this approach. Possible scenarios are a graphical user interface for clinical staff for easier…

More information

Term: March 1, 2017 - June 30, 2020
Project leader: ,

Breast cancer is the leading cause of cancer related deaths in women, the second most common cancer worldwide. The development and progression of breast cancer is a dynamic biological and evolutionary process. It involves a composite organ system, with transcriptome shaped by gene aberrations, epigenetic changes, the cellular biological context, and environmental influences. Breast cancer growth and response to treatment has a number of characteristics that are specific to the individual patient,…

More information

Term: January 1, 2017 - May 1, 2020
Funding source: Deutscher Akademischer Austauschdienst (DAAD)
Project leader:

Cardiovascular diseases (CVDs) and other cardiac pathologies are the leading cause of death in Europe and the USA. Timely diagnosis and post-treatment follow-ups are imperative for improving survival rates and delivering high-quality patient care. These steps rely heavily on numerous cardiac imaging modalities, which include CT (computerized tomography), coronary angiography and cardiac MRI. Cardiac MRI is a non-invasive imaging modality used to detect and monitor cardiovascular diseases. Consequently,…

More information

λ Colloquium

No event found!

Relations to other fields of research