• Skip navigation
  • Skip to navigation
  • Skip to the bottom
Simulate organization breadcrumb open Simulate organization breadcrumb close
Friedrich-Alexander-Universität Pattern Recognition Lab PRL
  • FAUTo the central FAU website
Suche öffnen
  • Campo
  • StudOn
  • FAUdir
  • Jobs
  • Map
  • Help
Friedrich-Alexander-Universität Pattern Recognition Lab PRL
Navigation Navigation close
  • Lab
    • News
    • Cooperations
    • Join the Pattern Recognition Lab
    • Ph.D. Gallery
    • Contact
    • Directions
  • Team
    • Our Team
    • Former PRL members
  • Research
    • Research Groups
    • Research Projects
    • Publications
    • Competitions
    • Datasets
    • Research Demo Videos
    • Pattern Recognition Blog
    • Beyond the Patterns
  • Teaching
    • Curriculum / Courses
    • Lecture Notes
    • Lecture Videos
    • LME Videos
    • Thesis / Projects
  1. Home
  2. Research
  3. Research Groups
  4. Inverse Problems and Applications (IPA)
  5. Improving multi-modal quantitative SPECT with Deep Learning approaches to optimize image reconstruction and extraction of medical information

Improving multi-modal quantitative SPECT with Deep Learning approaches to optimize image reconstruction and extraction of medical information

In page navigation: Research
  • Beyond the Patterns
  • Competitions
  • Publications
  • Datasets
  • An AI-based framework for visualizing and analyzing massive amounts of 4D tomography data for beamline end users
  • An AI-based framework for visualizing and analyzing massive amounts of 4D tomography data for beamline end users
  • An AI-based framework for visualizing and analyzing massive amounts of 4D tomography data for beamline end users

Improving multi-modal quantitative SPECT with Deep Learning approaches to optimize image reconstruction and extraction of medical information

Improving multi-modal quantitative SPECT with Deep Learning approaches to optimize image reconstruction and extraction of medical information

(Non-FAU Project)

Overall project:
Project leader: Maximilian Reymann
Project members: Andreas Maier, Maximilian Reymann
Start date: April 1, 2019
End date: April 30, 2022
Acronym: IMQSDL
Funding source:
URL:

Abstract

This project aims to improve multi-modal quantitative SPECT with Deep Learning approaches to optimize image reconstruction and extraction of medical information. Such improvements include noise reduction and artifact removal from data acquired in SPECT.

Publications

  • Reymann M., Würfl T., Stimpel B., Ritt P., Cachovan M., Vija AH., Maier A.:
    U-Net for SPECT Image Denoising
    2019 IEEE Nuclear Science Symposium (NSS) and Medical Imaging Conference (MIC) (Manchester, October 26, 2019 - November 2, 2019)
    In: IEEE (ed.): 2019 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC) 2019
    DOI: 10.1109/nss/mic42101.2019.9059879
    BibTeX: Download
  • Reymann M., Würfl T., Ritt P., Cachovan M., Stimpel B., Maier A.:
    Deep Image Denoising in SPECT
    Annual Congress of the European Association of Nuclear Medicine (Barcelona, October 12, 2019 - October 16, 2019)
    In: Springer-Verlag GmbH Germany, part of Springer Nature 2019 (ed.): European Journal of Nuclear Medicine and Molecular Imaging (2019) 46 (Suppl 1): S1–S952, 10.1007/s00259-019-04486-2, Berlin, Heidelberg: 2019
    DOI: 10.1007/s00259-019-04486-2
    URL: https://link.springer.com/article/10.1007/s00259-019-04486-2
    BibTeX: Download

Friedrich-Alexander-Universität Erlangen-Nürnberg
Lehrstuhl für Mustererkennung (Informatik 5)

Martensstr. 3
91058 Erlangen
  • Contact
  • Login
  • Intranet
  • Imprint
  • Privacy
  • Accessibility
  • RSS Feed
  • Instagram
  • TikTok
  • Mastodon
  • BlueSky
  • YouTube
  • Facebook
  • Xing
  • LinkedIn
  • Community
  • Threads
Up