Truncation-correction Method for X-ray Dark-field Computed Tomography

Type: BA thesis

Status: finished

Date: June 1, 2019 - November 4, 2019

Supervisors: Lina Felsner, Tino Haderlein, Andreas Maier, Christian Riess

Grating-based imaging provides three types of images, an absorption, differential phase and dark-field image. The dark-field image provides structural information about the specimen at the micrometer and sub-micrometer scale. A dark-field image can be measured by a X-ray grating interferometer. For example the Talbot-Lau interferometer that consists of three gratings. Due to the small size of the gratings, truncation arises in the projection images. This becomes an issue, since it leads to artifacts in the reconstruction.

This Bachelor thesis aims to reduce truncation artifacts of dark-field reconstructions. Inspired by the method proposed by Felsner et al. [1] the truncated dark-field image will be corrected by using the information of a complete absorption image. To describe the correlation between absorption and the dark-field signal, the decomposition by Kaeppler et al. [2] will be used. The dark-field correction algorithm will be implemented in an iterative scheme and a parameter search and evaluation of the method will be conducted.

References:
[1] Lina Felsner, Martin Berger, Sebastian Kaeppler, Johannes Bopp, Veronika Ludwig, Thomas Weber, Georg Pelzer, Thilo Michel, Andreas Maier, Gisela Anton, and Christian Riess. Phase-sensitive region-of-interest computed tomography. In Medical Image Computing and Computer Assisted Intervention – MICCAI 2018, pages 137–144, Cham, 2018. Springer International Publishing.
[2] Sebastian Kaeppler, Florian Bayer, Thomas Weber, Andreas Maier, Gisela Anton, Joachim Hornegger, Matthias Beckmann, Peter A. Fasching, Arndt Hartmann, Felix Heindl, Thilo Michel, Gueluemser Oezguel, Georg Pelzer, Claudia Rauh, Jens Rieger, Ruediger Schulz-Wendtland, Michael Uder, David Wachter, Evelyn Wenkel, and Christian Riess. Signal decomposition for x-ray dark-field imaging. In Medical Image Computing and Computer Assisted Intervention – MICCAI 2014, pages 170–177, Cham, 2014. Springer International Publishing.