Synergistic Radiomics and CNN Features for Multiparametric MRI Lesion Classification

Type: Project

Status: finished

Supervisors: Sulaiman Vesal, Stephan Ellmann, Andreas Maier

Breast cancer is the most frequent cancer among women, impacting 2.1 million women each year. In order to assist in diagnosing patients with breast cancer, to measure the size of the existing breast tumors and to check for tumors in the opposite breast, breast magnetic resonance imaging (MRI) can be applied. MRI enjoys the advantages that patients won’t suffer from ionizing radiation during the examination, and it can capture the entire breast volume. In the meanwhile, machine learning methods have been proved to accurately classify images by assigning the probability score to estimate the likelihood of an image belonging to a certain category in many fields. With the properties mentioned above, this project aims to investigate whether applying machine learning approaches to breast tumor MRI can provide an accurate prediction on the tumor type (malignant or benign) for the diagnosing purpose.