Predicting Hearing Aid Fittings Based on Audiometric and Subject-Related Data: A Machine Learning Approach

Type: MA thesis

Status: finished

Date: November 29, 2019 - June 12, 2020

Supervisors: Nadja Schinkel-Bielefeld (Sivantos), Hendrik Schröter, Alberto N. Escalante-B. (Sivantos), Ulrich Hoppe (Universitätsklinikum Erlangen), Andreas Maier

Hearing aids (HA) are configured to the wearer’s individual needs, which might vary greatly from user to user. Currently, it is common practice, that the initial HA gain settings are based on generic fitting formulas that link a user’s pure-tone hearing threshold to amplification characteristics. Subsequently, a time-consuming fine-tuning process follows, in which a hearing care professional (HCP) adjusts the HA settings to the user’s individual demands. An advanced, more personalized gain prescription procedure could support HCPs by reducing fine-tuning effort and facilitate over-the-counter HAs. We propose a machine learning based prediction for HA gain to minimize subsequent fine-tuning effort. The data-driven approach takes audiometic and personal variables into account, such as age, gender, and the user’s acoustical environment.

A random forest regression model was trained on real-world HA fittings from the Connexx database (fitting software provided by Sivantos GmbH). Three months of data from Connexx version 9.1.0.364 were used. A data cleaning framework was implemented to extract a representative data set based on a list of machine learning and audiological criteria. These criteria include, for instance, using only ‘informative’ HCPs who perform fine-tuning for at least some patients. Furthermore, ‘informative’ HCPs are those who perform diagnostics beyond air conduction audiograms, use new technologies and special features. The resulting training data comprised 20,000 HA fittings and a 10-fold cross validation was used to train the random forest.