• Jump to content
  • Jump to navigation
  • Jump to bottom of page
Simulate organization breadcrumb open Simulate organization breadcrumb close
Pattern Recognition Lab
  • FAUTo the central FAU website
  • Campo
  • UnivIS
  • Jobs
  • Map
  • Help

Pattern Recognition Lab

Navigation Navigation close
  • Overview
    • Contact
    • Directions
    Portal Overview
  • Team
    • Former PRL members
    Portal Team
  • Research
    • Research Groups
    • Research Projects
    • Pattern Recognition Blog
    • Beyond the Patterns
    • Publications
    • Research Demo Videos
    • Datasets
    • Competitions
    Portal Research
  • Teaching
    • Curriculum / Courses
    • Lecture Notes
    • Lecture Videos
    • Thesis / Projects
    • Free Machine and Deep Learning Resources
    • Free Medical Engineering Resources
    • LME Videos
    Portal Teaching
  • Lab
    • News
    • Ph.D. Gallery
    • Cooperations
    • Join the Pattern Recognition Lab
    Portal Lab
  1. Home
  2. Research
  3. Research Groups
  4. Weitere Projekte
  5. MotionLab@Home: Multimodal movement analysis system for therapy monitoring

MotionLab@Home: Multimodal movement analysis system for therapy monitoring

In page navigation: Research
  • Beyond the Patterns
  • Competitions
  • Publications
  • Datasets

MotionLab@Home: Multimodal movement analysis system for therapy monitoring

MotionLab@Home: Multimodal movement analysis system for therapy monitoring

(Third Party Funds Group – Sub project)

Titel des Gesamtprojektes: E-Home-Center
Projektleitung: Björn Eskofier
Projektbeteiligte: Jochen Klucken, Cristian Federico Pasluosta, Heiko Gaßner
Projektstart: October 1, 2015
Projektende: December 31, 2016
Akronym:
Mittelgeber: Bayerisches Staatsministerium für Bildung und Kultus, Wissenschaft und Kunst (ab 10/2013) / Forschungsverbund
URL:

Abstract

A current challenge is the transfer of mobile sensor-based gait analysis systems from clinical settings to the home environment to capture movement parameters and their changes (for example due to medication) in everyday life. The goal of this project is to build a complementary, video and sensor based system which can be used to evaluate long-term monitoring of interventions in Parkinson's Disease in the home-environment. Ethical aspects of home-monitoring are especially taken into consideration in the development phase. The sensor system will be based on the eGaIT system ("embedded Gait analysis using Intelligent Technology) and a markerless video-capturing system. Ethical research is performed to consider potential issues within this scope.

Publikationen

  • Kluge F., Pasluosta CF., Gaßner H., Klucken J., Eskofier B.:
    MotionLab@Home: Complementary Measurement of Gait Characteristics Using Wearable Technology and Markerless Video Tracking - A Study Protocol
    In: Advanced Engineering Forum 19 (2016), p. 149-155
    ISSN: 2234-9898
    DOI: 10.4028/www.scientific.net/AEF.19.149
    BibTeX: Download
  • Kluge F., Gaßner H., Hannink J., Pasluosta CF., Klucken J., Eskofier B.:
    Towards Mobile Gait Analysis: Concurrent Validity and Test-Retest Reliability of an Inertial Measurement System for the Assessment of Spatio-Temporal Gait Parameters
    In: Sensors 17 (2017), p. 1522
    ISSN: 1424-8220
    DOI: 10.3390/s17071522
    BibTeX: Download
Friedrich-Alexander-Universität
Erlangen-Nürnberg

Schlossplatz 4
91054 Erlangen
  • Login
  • Intranet
  • Imprint
  • Privacy
  • Accessibility
Up