• Jump to content
  • Jump to navigation
  • Jump to bottom of page
Simulate organization breadcrumb open Simulate organization breadcrumb close
Pattern Recognition Lab
  • FAUTo the central FAU website
  • Campo
  • UnivIS
  • Jobs
  • Map
  • Help

Pattern Recognition Lab

Navigation Navigation close
  • Overview
    • Contact
    • Directions
    Portal Overview
  • Team
    • Former PRL members
    Portal Team
  • Research
    • Research Groups
    • Research Projects
    • Pattern Recognition Blog
    • Beyond the Patterns
    • Publications
    • Research Demo Videos
    • Datasets
    • Competitions
    Portal Research
  • Teaching
    • Curriculum / Courses
    • Lecture Notes
    • Lecture Videos
    • Thesis / Projects
    • Free Machine and Deep Learning Resources
    • Free Medical Engineering Resources
    • LME Videos
    Portal Teaching
  • Lab
    • News
    • Ph.D. Gallery
    • Cooperations
    • Join the Pattern Recognition Lab
    Portal Lab
  1. Home
  2. Research
  3. Research Groups
  4. Other Projects
  5. Verbesserte Dual Energy Bildgebung mittels Maschinellem Lernen

Verbesserte Dual Energy Bildgebung mittels Maschinellem Lernen

In page navigation: Research
  • Beyond the Patterns
  • Competitions
  • Publications
  • Datasets

Verbesserte Dual Energy Bildgebung mittels Maschinellem Lernen

Verbesserte Dual Energy Bildgebung mittels Maschinellem Lernen

(Third Party Funds Single)

Overall project:
Project leader: Andreas Maier
Project members:
Start date: April 1, 2020
End date: December 31, 2020
Acronym:
Funding source: Europäische Union (EU)
URL:

Abstract

The project aims to develop novel and innovative methods to improve visualisation and use of dual energy CT (DECT) images. Compared to conventional single energy CT (SECT) scans, DECT contains a significant amount of additional quantitative information that enables tissue characterization far beyond what is possible with SECT, including material decomposition for quantification and labelling of specific materials within tissues, creation of reconstructions at different predicted energy levels, and quantitative spectral tissue characterization for tissue analysis. However, despite the many potential advantages of DECT, applications remain limited and in specizlized clinical settings. Some reasons are that many applications are specific for the organ under investigation, require additional, manual processing or calibration, and not easily manipulated using standard interactive contrast visualisation windows available in clinical viewing stations. This is a significant disadvantage compared to conventional SECT.
In this project, we propose to develop new strategies to fuse and display the additional DECT information on a single contrast scale such that it can be visualised with the same interactive tools that radiologists are used to in their clinical routine. We will investigate non-linear manifold learning techniques like Laplacian Eigenmaps and the Sammon Mapping. Both allow extension using AI-based techniques like the newly developed user loss that allows to integrate user's opinions using forced choice experiments. This will allow a novel image contrast that will be compatible with interactive window and level functions that are rourintely used by radiologists. Furthermore, we aim at additional developments that will use deep neural networks to approximate the non-linear mapping function and to generate reconstructions that capture and display tissue specific spectral characteristics in a readily and universally useable manner for enhancing diagnostic value.

Publications

Friedrich-Alexander-Universität
Erlangen-Nürnberg

Schlossplatz 4
91054 Erlangen
  • Login
  • Intranet
  • Imprint
  • Privacy
  • Accessibility
Up