Soroosh Tayebi Arasteh

Dr.-Ing. Dr. rer. medic. Soroosh Tayebi Arasteh

Postdoctoral Researcher

Department of Computer Science
Chair of Computer Science 5 (Pattern Recognition)

Room: Room 10.137
Martensstr. 3
91058 Erlangen

Open Student Positions:

There some open positions. Please check below

Academic CV

  • Since 2024: Postdoctoral Researcher at the Pattern Recognition Lab
  • 2024: Doctor of Theoretical Medicine (Dr. rer. medic.), RWTH Aachen University, Aachen, Germany
  • 2024: Doctor of Engineering (Dr.-Ing.) in Computer Science, FAU Erlangen-Nürnberg, Erlangen, Germany
  • 2021: M.Sc. Thesis in Medical Image and Data Processing, Harvard Medical School, Boston, MA, USA
  • 2021: M.Sc. in Communications and Multimedia Engineering, FAU Erlangen-Nürnberg, Erlangen, Germany
  • 2017: B.Sc. in Electrical Engineering, Bu-Ali Sina University, Hamedan, Iran

Publications

Please visit my website for an up-to-date list of journals.

Selected Journal Publications

Current Journal Roles

Editorial Board Member

  • European Radiology Experimental

Peer-Reviewer

Please visit my website for an up-to-date list of journals.

  • Nature Communications
  • npj Digital Medicine
  • Eurosurveillance
  • Medical Image Analysis
  • IEEE Transactions on Medical Imaging
  • View
  • npj Precision Oncology
  • Respirology
  • IEEE Journal of Biomedical and Health Informatics
  • Archives of Computational Methods in Engineering
  • Scientific Data
  • Scientific Reports
  • BMC Medicine
  • Journal of Medical Internet Research
  • Computerized Medical Imaging and Graphics

Talks

Please visit my website for an up-to-date list of talks.

2024

  • S. Tayebi Arasteh, A. Ziller, D. Truhn, G. Kaissis. “Differential Privacy in Large-Scale AI Models: Ensuring Fairness and Diagnostic Accuracy in Medical Imaging.” TPDP 2024 – Theory and Practice of Differential Privacy, Boston, MA, USA, August 2024
  • Keynote Speech. “Encrypted Federated Learning: Next-Level Privacy in Decentralized Collaborative Medical AI.” Pattern Recognition Conference Summer 2024, Obertrum am See, Austria, July 2024
  • S. Tayebi Arasteh, C. Kuhl, D. Truhn, S. Nebelung. “The Future is Collaborative: A Systematic Analysis of Federated Learning and Framework Parameters in the AI-Based Interpretation of Chest Radiographs.” 105. Deutscher Röntgenkongress (105th German X-ray Congress), Wiesbaden, Germany, May 2024
  • S. Tayebi Arasteh, C. Kuhl, S. Nebelung, D. Truhn. “Tapping the Pool of Non-Medical Images for Enhanced AI-Based Chest Radiography Analysis.” 105. Deutscher Röntgenkongress, Wiesbaden, Germany, May 2024

2023

  • G. Mueller-Franzes, S. Tayebi Arasteh, F. Khader, S. Nebelung, C. Kuhl, D. Truhn. “Standardizing Qualitative and Quantitative Breast Parenchymal Enhancement Assessment in Breast MRI.” 109th Radiological Society of North America (RSNA) annual meeting, Chicago, IL, USA, 2023
  • S. Tayebi Arasteh, P. Isfort, C. Kuhl, S. Nebelung, D. Truhn. “Automatic Evaluation of Chest Radiographs – The Data Source Matters, But How Much Exactly?” 104. Deutscher Röntgenkongress, Wiesbaden, Germany, 2023
  • S. Tayebi Arasteh P. Isfort, Marwin Saehn, C. Kuhl, D. Truhn, S. Nebelung. “Training of AI Models Beyond the Local Dataset Using Federated Learning with 695,000 NonIdentically-Labeled Chest Radiographs.” 104. Deutscher Röntgenkongress, Wiesbaden, Germany, May 2023

2022

  • S. Tayebi Arasteh, J.N. Kather, F. Khader, G. Mueller-Franzes, C. Kuhl, P. Isfort, S. Nebelung, P. Bruners, D. Truhn. “Secure Federated Learning for Decentralized Collaboration in Development of AI Models.” 108th RSNA annual meeting, Chicago, IL, USA, Nov-Dec 2022

Lectures