Soroosh Tayebi Arasteh
Dr.-Ing. Dr. rer. medic. Soroosh Tayebi Arasteh
Academic CV
- Since 2024: Postdoctoral Researcher at the Pattern Recognition Lab
- 2024: Doctor of Theoretical Medicine (Dr. rer. medic.), RWTH Aachen University, Aachen, Germany
- 2024: Doctor of Engineering (Dr.-Ing.) in Computer Science, FAU Erlangen-Nürnberg, Erlangen, Germany
- 2021: M.Sc. Thesis in Medical Image and Data Processing, Harvard Medical School, Boston, MA, USA
- 2021: M.Sc. in Communications and Multimedia Engineering, FAU Erlangen-Nürnberg, Erlangen, Germany
- 2017: B.Sc. in Electrical Engineering, Bu-Ali Sina University, Hamedan, Iran
Publications
Please visit my website for an up-to-date list of journals.
Selected Journal Publications
- S. Tayebi Arasteh, T. Han, M. Lotfinia, C. Kuhl, J.N. Kather, D. Truhn, S. Nebelung. “Large language models streamline automated machine learning for clinical studies.” Nature Communications (2024)
- S. Tayebi Arasteh, R. Siepmann, M. Huppertz, M. Lotfinia, B. Puladi, C. Kuhl, D. Truhn, S. Nebelung. “The Treasure Trove Hidden in Plain Sight: The Utility of GPT-4 in Chest Radiograph Evaluation.” Radiology (2024)
- S. Tayebi Arasteh, T. Arias Vergara, P. Perez, T. Weise, K. Packhäuser, M. Schuster, E. Noeth, A. Maier, S.H. Yang. “Addressing challenges in speaker anonymization to maintain utility while ensuring privacy of pathological speech.” Communications Medicine (2024)
- S. Tayebi Arasteh, A. Ziller, C. Kuhl, M. Makowski, S. Nebelung, R. Braren, D. Rueckert, D. Truhn, G. Kaissis. “Preserving fairness and diagnostic accuracy in private large-scale AI models for medical imaging.” Communications Medicine (2024)
- S. Tayebi Arasteh, M. Lotfinia, T. Nolte, M.J. Sähn, P. Isfort, C. Kuhl, S. Nebelung, G. Kaissis, D. Truhn. “Securing Collaborative Medical AI by Using Differential Privacy: Domain Transfer for Classification of Chest Radiographs.” Radiology: Artificial Intelligence (2024)
- D. Truhn*, S. Tayebi Arasteh* (shared first author), et al. “Encrypted federated learning for secure decentralized collaboration in cancer image analysis“. Medical Image Analysis (2024)
- S. Tayebi Arasteh, C. Kuhl, M.J. Saehn, P. Isfort, D. Truhn, S. Nebelung. “Enhancing domain generalization in the AI-based analysis of chest radiographs with federated learning.” Scientific Reports (2023)
- S. Tayebi Arasteh, P. Isfort, M. Saehn, G. Mueller-Franzes, F. Khader, J.N. Kather, C. Kuhl, S. Nebelung, D. Truhn. “Collaborative training of medical artificial intelligence models with non-uniform labels.” Scientific Reports (2023)
- S. Tayebi Arasteh, T. Weise, M. Schuster, E. Nöth, A.K. Maier, S.H. Yang. “The effect of speech pathology on automatic speaker verification: a large-scale study.” Scientific Reports (2023)
- S. Tayebi Arasteh, L. Misera, J.N. Kather, D. Truhn, S. Nebelung. “Enhancing diagnostic deep learning via self-supervised pretraining on large-scale, unlabeled non-medical images.” European Radiology Experimental (2024)
- S. Tayebi Arasteh, J. Romanowicz, D.F. Pace, P. Golland, A.J. Powell, A.K. Maier, D. Truhn, T. Brosch, J. Weese, M. Lotfinia, R.J. van der Geest, M.H. Moghari. “Automated segmentation of 3D cine cardiovascular magnetic resonance imaging.” Frontiers in Cardiovascular Medicine (2023)
Open Student Positions
- Master’s thesis/project: Deep Learning-Based Prostate Cancer Grading from Whole-Slide Images
- Master’s thesis/project: Few-Shot Adaptation of Generalist Vision Models for Gastrointestinal Medical Image Analysis
Current Journal Roles
Editorial Board Member
- European Radiology Experimental
Peer-Reviewer
Please visit my website for an up-to-date list of journals.
- Nature Communications
- npj Digital Medicine
- Eurosurveillance
- Medical Image Analysis
- IEEE Transactions on Medical Imaging
- View
- npj Precision Oncology
- Respirology
- IEEE Journal of Biomedical and Health Informatics
- Archives of Computational Methods in Engineering
- Scientific Data
- Scientific Reports
- BMC Medicine
- Journal of Medical Internet Research
- Computerized Medical Imaging and Graphics
Talks
Please visit my website for an up-to-date list of talks.
2024
- S. Tayebi Arasteh, A. Ziller, D. Truhn, G. Kaissis. “Differential Privacy in Large-Scale AI Models: Ensuring Fairness and Diagnostic Accuracy in Medical Imaging.” TPDP 2024 – Theory and Practice of Differential Privacy, Boston, MA, USA, August 2024
- Keynote Speech. “Encrypted Federated Learning: Next-Level Privacy in Decentralized Collaborative Medical AI.” Pattern Recognition Conference Summer 2024, Obertrum am See, Austria, July 2024
- S. Tayebi Arasteh, C. Kuhl, D. Truhn, S. Nebelung. “The Future is Collaborative: A Systematic Analysis of Federated Learning and Framework Parameters in the AI-Based Interpretation of Chest Radiographs.” 105. Deutscher Röntgenkongress (105th German X-ray Congress), Wiesbaden, Germany, May 2024
- S. Tayebi Arasteh, C. Kuhl, S. Nebelung, D. Truhn. “Tapping the Pool of Non-Medical Images for Enhanced AI-Based Chest Radiography Analysis.” 105. Deutscher Röntgenkongress, Wiesbaden, Germany, May 2024
2023
- G. Mueller-Franzes, S. Tayebi Arasteh, F. Khader, S. Nebelung, C. Kuhl, D. Truhn. “Standardizing Qualitative and Quantitative Breast Parenchymal Enhancement Assessment in Breast MRI.” 109th Radiological Society of North America (RSNA) annual meeting, Chicago, IL, USA, 2023
- S. Tayebi Arasteh, P. Isfort, C. Kuhl, S. Nebelung, D. Truhn. “Automatic Evaluation of Chest Radiographs – The Data Source Matters, But How Much Exactly?” 104. Deutscher Röntgenkongress, Wiesbaden, Germany, 2023
- S. Tayebi Arasteh P. Isfort, Marwin Saehn, C. Kuhl, D. Truhn, S. Nebelung. “Training of AI Models Beyond the Local Dataset Using Federated Learning with 695,000 NonIdentically-Labeled Chest Radiographs.” 104. Deutscher Röntgenkongress, Wiesbaden, Germany, May 2023
2022
- S. Tayebi Arasteh, J.N. Kather, F. Khader, G. Mueller-Franzes, C. Kuhl, P. Isfort, S. Nebelung, P. Bruners, D. Truhn. “Secure Federated Learning for Decentralized Collaboration in Development of AI Models.” 108th RSNA annual meeting, Chicago, IL, USA, Nov-Dec 2022
Lectures
- Advanced Deep Learning (Winter Semester 2024-2025)