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Abstract—Restoring power after a major outage (Netzwieder-
aufbau) in a 110kV distribution network is a complex sequential
decision-making task. Operators must coordinate switching oper-
ations, generator starts, and load reconnections under tight safety
constraints (voltage, frequency, equipment limits). Traditional
rule-based restoration plans struggle to adapt to unforeseen
scenarios, motivating the use of reinforcement learning (RL) to
learn adaptive strategies. Recent studies have shown that deep RL
can successfully orchestrate distribution system restoration using
distributed energy resources and network switching. However,
applying RL to power system restoration requires addressing
safety and trust. An inappropriate action (e.g. closing a breaker
out of sequence) can jeopardize system stability, so the learning
process and the learned policy must strictly respect operational
constraints. Moreover, a black-box RL agent’s suggestions may
not be trusted by human operators due to lack of transparency.

Index Terms—We aim to develop a safe, real-time-capable
RL methodology that assists distribution-network operators
during restoration at 110 kV. The policy must (i) interface
with DIgSILENT PowerFactory’s real-time RMS simulator, (ii)
yield millisecond inference for operator decision support, (iii)
guarantee operational safety via constrained or shielded learning,
and (iv) provide interpretable rationales. confidence.

I. METHODOLOGY OVERVIEW

We propose a two-stage deep-RL framework: (1) supervised
imitation of Restoration Typicals, followed by (2) safe RL
optimisation.

A. Environment Setup

The 110 kV network dynamics are modelled in DIgSILENT
PowerFactory (RMS). At each RL step the agent selects a
Restoration action (e.g. close tie switch, energise line, start
generator); the simulator then resolves transients and returns
the next state and reward. The simulator can be accelerated
off-line for training, whereas the trained policy runs in real
time for operator assistance.

B. State Representation

Observations include bus voltages, frequencies, breaker
states, available generation and load levels. To capture topol-
ogy, we embed the grid as a graph and apply a graph neural
network (GNN) encoder [4].

C. Action Space: Restoration Typicals

Rather than arbitrary controls, we expose a discrete set of
expert-derived Restoration Typicals. Constraining the agent to
these feasible high-level actions reduces search space and pre-
filters unsafe moves, supplying a safety prior from the outset.

D. Reward Design

We reward load restored (MW or priority loads served) and
penalise elapsed time and every constraint violation (out-of-
range voltage, line overload, frequency excursion). Episodes
terminate with a large negative reward if protective relays
would trip [1]. A small per-switch penalty discourages ex-
cessive operations [5].

II. STAGE 1: SUPERVISED IMITATION LEARNING

Historical expert trajectories and offline-optimised Typicals
furnish state–action pairs. We train a policy network via
behaviour cloning:

LBC = E(s,a)∼D[− log πθ(a | s)] . (1)

The resulting policy π0 replicates established restoration se-
quences with high fidelity, providing a safe initialisation and
an action filter for Stage 2 [6].

III. STAGE 2: SAFE RL OPTIMISATION

A. Constrained PPO

We refine π0 using Lagrangian Proximal Policy Optimi-
sation (PPO-L) [7]. Grid restoration is formulated as a con-
strained Markov decision process (CMDP):

max
π

Jr(π) = E
[∑

t γ
trt

]
s.t. Jc(π) = E

[∑
t γ

tct

]
≤ ϵ, (2)

where ct counts safety violations. PPO-L updates minimise
the clipped surrogate while adjusting a Lagrange multiplier λ
to enforce Jc ≤ ϵ.

B. Shielded Action Selection

A runtime shield intercepts unsafe actions before execution,
replacing them with the nearest safe alternative [8]. Shield
interventions are logged and penalised, steering the policy to
self-compliance.



IV. INTEGRATION AND DEPLOYMENT

The trained policy is exported (ONNX) and embedded in a
Python-based decision-support tool interfaced with PowerFac-
tory. Inference latency is ≈ 3ms, well below SCADA refresh
cycles. Operators receive top-N ranked suggestions, each
accompanied by rule-based and XAI explanations (decision-
tree surrogate, SHAP) [9].

V. CONCLUSION

Our two-stage framework combines expert imitation, con-
strained PPO and shielding to deliver safe, interpretable,
real-time restoration guidance for 110 kV grids. By grounding
decisions in Restoration Typicals and guaranteeing constraint
adherence, the approach accelerates recovery while maintain-
ing operator trust.
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